

Table of Contents

Click on the topic to go to that section

Writing Ratios

Equivalent Ratios
Rates
Proportions
Direct \& Indirect Relationships in Tables \& Graphs
Constant of Proportionality
Writing Equations for Proportions
Understanding Graphs of Proportions
Problem Solving
Scale Drawings
Similar Figures

Common Core: 7.RP.1, 7.RP.2, 7.G. 1

Writing Ratios

Return to

Table of
Contents

Ratios

What do you know about ratios?

When have you seen or used ratios?

Ratios

Ratio - A comparison of two numbers by division

Ratios can be written three different ways:
a to $b \quad a: b \quad b^{\underline{a}}$

Each is read, "the ratio of a to b."
Each ratio should be in simplest form.

Find the ratio of boys to girls in this class

Slide 6 / 168
\qquad
\qquad
\qquad
\qquad
\qquad

There are 48 animals in the field. Twenty are cows and the rest are horses.

Write the ratio in three ways:
a. The number of cows to the number of horses
b. The number of horses to the number of animals in the field

Remember to write your ratios in simplest form!

1 There are 27 cupcakes. Nine are chocolate, 7 are vanilla and the rest are strawberry. What is the ratio of vanilla cupcakes to strawberry cupcakes?

- 7:9
- B $\quad \frac{7}{27}$

○ $\frac{7}{11}$
$\overline{11}$
OD 1:3

Slide 8 / 168

2 There are 27 cupcakes. Nine are chocolate, 7 are vanilla and the rest are strawberry. What is the ratio of chocolate \& strawberry cupcakes to vanilla \& chocolate cupcakes?

A $\frac{20}{16}$ $\overline{16}$

B $\frac{11}{7}$
○ $\frac{5}{4}$
OD $\quad \frac{16}{20}$

3 There are 27 cupcakes. Nine are chocolate, 7 are vanilla and the rest are strawberry. What is the ratio of chocolate cupcakes to total cupcakes?

○ $\frac{7}{9}$

- B $\quad \frac{7}{27}$

○ $\quad 9$

OD $\frac{1}{3}$

4 There are 27 cupcakes. Nine are chocolate, 7 are vanilla and the rest are strawberry. What is the ratio of total cupcakes to vanilla cupcakes?

A 27 to 9

- B 7 to 27

○ 27 to 7

OD 11 to 27

Slide 11 / 168
Side 11/168

$$
\text { OD } \quad 11 \text { to } 27
$$

-

Equivalent ratios have the same value

\[\)| $3: 2 \text { is equivalent to } 6: 4$ |
| :--- |
| 1 to 3 is equivalent to 9 to 27 |
| $\frac{5}{6} \text { is equivalent to } \frac{35}{42}$ |

\]

Equivalent ratios have the same value

3:2 is equivalent to 6:4

1 to 3 is equivalent to 9 to 27
$\frac{5}{6}$ is equivalent to $\frac{35}{42}$

There are two ways to determine if ratios are equivalent.

1. Common Factor

$$
\begin{aligned}
& \frac{4}{5}=\frac{12}{15} \\
& \frac{4}{x^{3}=\frac{12}{15}}{ }_{x 3}^{2}
\end{aligned}
$$

Since the numerator and denominator were multiplied by the same value, the ratios are equivalent

Slide 14 / 168
\qquad
\qquad \square
\qquad \square
\qquad
\qquad

Slide 15 / 168

2. Cross Products

Since the cross products are equal, the ratios are equivalent.

$$
\begin{aligned}
4 \times 15 & =5 \times 12 \\
60 & =60
\end{aligned}
$$

(5) $\frac{4}{9}$ is equivalent to $\frac{8}{18}$
OTrue
OFalse
(6) $\frac{5}{9}$ is equivalent to $\frac{30}{54}$

OTrue
OFalse
(7) $18: 12$ is equivalent to $\frac{9}{6}$, which is equivalent to $\frac{36}{24}$
(8) $\frac{2}{2}$ is equivalent to $\frac{10}{120}$, which is equivalent to $\frac{40}{480}$
True
False
(9) $1: 7$ is equivalent to $\frac{10}{\mathbf{7 0}}$, which is equivalent to 5 to 65
(9) $1: 7$ is equivalent to $\frac{10}{\mathbf{7 0}}$, which is equivalent to 5 to 65

OTrue

False

Slide 20 / 168

Slide 21 / 168

Rates
Rate: a ratio of two quantities measured in different units
Examples of rates:
4 participants/2 teams
5 gallons/3 rooms
8 burgers/2 tomatoes

Unit Rates

Unit rate: Rate with a denominator of one Often expressed with the word "per"

Examples of unit rates:
34 miles/gallon
2 cookies per person
62 words/minute
Slide 23 / 168

Finding a Unit Rate

Six friends have pizza together. The bill is $\$ 63$. What is the cost per person?

Hint: Since the question asks for cost per person, the cost should be first, or in the numerator.

Since unit rates always have a denominator of one, rewrite the rate so that the denominator is one.

Slide 24 / 168

\qquad

Slide 26 / 168
10 Sixty cupcakes are at a party for twenty children. How many cupcakes per person?

12 The snake can slither 240 feet in half a day. How many feet can the snake move in an hour?

13 There are five chaperones at the dance of 100 students. How many students per chaperone are there?

14 The recipe calls for 6 cups of flour for every four eggs. How many cups of flour are needed for one egg?
15 Sarah rode her bike \quad Sailes in hour. ${ }_{4}^{3}$ What is
Sarah's unit rate in miles per hour?

We often use unit rates to easily compare rates.
Example:
Sebastian and Alexandra both work during the summer.
Sebastian worked 26 hours one week and earned
$\$ 188.50$ before taxes. Alexandra worked 19 hours and
earned $\$ 128.25$ before taxes. Who earns more per hour
at their job?
\qquad Sebastian

Jim traveled 480 miles on a full tank of gas. His gas tank holds 15 gallons.

Tara traveled 540 miles on a full tank of gas. Her gas tank holds 18 gallons.

Which person's car gets better gas mileage?

16 Tahira and Brendan going running at the track. Tahira runs 3.5 miles in 28 minutes and Brendan runs 4 miles in 36 minutes. Who runs at a faster pace (miles per hour)?

Show your work!
(1) Tahira
()B Brendan

Slide 35 / 168

17 Red apples cost $\$ 3.40$ for ten.
Green apples cost $\$ 2.46$ for six.
Which type of apple is cheaper per apple?

Show your work!

A Red apples
B Green apples

18 Fruity Oats is $\$ 2.40$ for a 12 oz . box.
Snappy Rice is $\$ 3.52$ for a 16 oz . box.
Which cereal is cheaper per ounce?

Show your work!

A Fruity Oats
()B Snappy Rice

19 Two families drive to their vacation spot. The Jones family drives 432 miles and used 16 gallons of gas. The Alverez family drives 319 miles and uses 11 gallons of gas. Which family got more miles per gallon of gas?

Show your work!

A Jones Family
© Alverez Family

Slide 38 / 168

Population Density			
Population Density: A unit rate of people per square			
mile			
This data is compiled by the US Census Bureau			
every 10 years and is used when determining the			
number of Representatives each state gets in the			
House of Representatives.			

Slide 41 / 168

To calculate population density:

Find the population of the state.
NJ $=8,791,894$ people

Find the area of the state.
NJ = 7,790 square miles

Divide

$\frac{\text { Population }}{\text { Area }}=\frac{8,791,894}{7,790}=1,129$ people per square mile

We know that New Jersey has a population density of 1,129 people per square mile. Use the links below to compare this data with two other states.

Population Density $=\frac{\text { Population }}{\text { Area }}$
Click here for population data
Click here for area data

21 The population of Newark, NJ is 278,980 people
in 24.14 square miles. What is its population
density?

Slide 44 / 168

22 The population of Moorestown, NJ is 19,509 people in 15 square miles. What is its population density?

Moorestown, NJ

23 The population of Waco, TX is 124,009 people in 75.8 square miles. What is its population density?

Waco

24 The population of Argentina is 40,091,359 people and Argentina is $1,042,476$ square miles. What is the population density?

Slide 47 / 168

25 The population of San Luis, Argentina is 432,310 people and the Provence is 29,633 square miles. What is the population density?

San Luis, Argentina
Slide 48 / 168

Proportions

Return to
Table of
Contents

Proportions

A proportion is an equation that states
that two ratios are equivalent.

Example:

$$
\begin{aligned}
& \frac{2}{3}=\frac{12}{18} 18 \\
& \frac{5}{9}=\frac{15}{27}
\end{aligned}
$$

Slide 50 / 168
\qquad
\qquad
\qquad \square
\qquad \square
\qquad
requires Flash, which
is not currentiy
supported in PDFs.
Please refer to fhe orficmal Notebook files

If one of the numbers in a proportion is unknown, mental math can be used to find an equivalent ratio.

Example 1:

$\frac{2}{3}=\frac{6}{x}$
$\overbrace{\frac{2}{3}=\frac{6}{x}}^{x 3}$
Hint: To find the value of x, multiply 3 by 3 also.
$\frac{2}{3}=\frac{6}{9}$
x 3
\qquad

If one of the numbers in a proportion is unknown, mental math can be used to find an equivalent ratio.

Example:

Hint: To find the value of x, divide 32 by 4 also.

27 Solve the proportion using equivalent ratios

$$
\frac{4}{9}=\frac{x}{36}
$$

Solve the

28 Solve the proportion using equivalent ratios

$$
\frac{7}{2}=\frac{35}{x}
$$

29 Solve the proportion using equivalent ratios

$$
\frac{x}{60}=\frac{4}{12}
$$

Solve the proportion using equivalent ratios

$$
\frac{3}{x}=\frac{21}{28}
$$

In a proportion, the cross products are equal.
$\frac{5}{2}=\frac{30}{12}$
$5 \cdot 12=2 \cdot 30$
$60=60$

Proportions can also be solved using cross products.

$\frac{4}{5}=\frac{12}{x}$	Cross multiply
$4 x=5 \bullet 12$	
$4 x=60$	Solve for x
$x=15$	

Example 2

Cross multiply
$7 \bullet 48=8 x$
$336=8 x$
Solve for x
$42=x$

Slide 60 / 168

31 Use cross products to solve the proportion

$$
\frac{9}{51}=\frac{x}{17}
$$

32
Use cross products to solve the proportion

$$
\frac{x}{12}=\frac{56}{96}
$$

33 Use cross products to solve the proportion

$$
\frac{45}{18}=\frac{x}{6}
$$

34 Use cross products to solve the proportion

$$
\frac{2}{15}=\frac{x}{60}
$$

$$
\frac{7}{x}=\frac{3}{21}
$$

Direct \& Indirect Relationships in Tables \& Graphs

Return to
Table of
Contents

You can determine if a relationship is proportional by looking at a table of values or the graph.

How?
Table
If all the ratios of numbers in the table are equivalent, the relationship is proportional.

Graph
If the graph of the numbers forms a straight line through the origin (0,0), the relationship is proportional.

Example.

On a field trip, every chaperone is assigned 12 students. Is the student to chaperone ratio proportional?

If you use a table to demonstrate, you would need several ratios to start.

Chaperones	1	2	3	4	5
Students	12	24	36	48	60

Next, find the simplified ratios and compare them. Are they the same?

Try this:
The local pizza place sells a plain pie for $\$ 10$. Each topping costs an additional $\$ 1.50$. Is the cost of pizza proportional to the number of toppings purchased?

Toppings	1	2	3	4
Cost (\$)	11.50	13.00	14.50	16.00

36 Is the relationship shown in the table proportional?
Yes
ONo

Year	1	2	4	5
Income	$\$ 22,000$	$\$ 44,000$	$\$ 88,000$	$\$ 110,000$

37 Is the relationship shown in the table proportional?

OYes
ONo

x	2	5	6	9
y	7	17.5	21	34.5

38 Is the relationship shown in the table proportional?
Yes
ONo

x	1	2	6	9
y	5	11	31	46

39 Is the relationship shown in the table proportional?
OYes
ONo

x	1	2	4	7
y	4	8	16	35

40 Is the relationship shown in the table proportional?
Yes
ONo

x	2	4	6	8
y	-3	-10	-15	-20

Remember:
Table
If all the ratios of numbers in the table are equivalent, the
relationship is proportional.
Graph
If the graph of the numbers forms a straight line through the
origin $(0,0)$, the relationship is proportional.

Example.
On a field trip, every chaperone is assigned 12 students. Is
the student to chaperone ratio proportional?

Chaperones	1	2	3	4	5
Students	12	24	36	48	60

Example.

Draw a graph to represent the relationship. Is the relationship proportional?

\mathbf{X}	\mathbf{Y}
1	5.5
2	
3	7
4	

\qquad

Slide 77 / 168

Slide 78 / 168

42 Is the relationship shown in the graph proportional?
ONo

OYes \qquad

43 Is the relationship shown in the graph proportional?
Yes

ONo

44 Is the relationship shown in the graph proportional?
Yes
ONo

45 Is the relationship shown in the graph proportional?

Constant of Proportionality

Return to Table of Contents

The constant of proportionality is a constant ratio (unit rate) in any proportional relationship.

We use the letterk to represent the constant of proportionality.

Equations:

$y=k x \quad$ or $\quad k=\frac{y}{x}$

We can find the constant of proportionality from a table of values, equation and a graph.

In a table, simplify any one of the ratios.

Chaperones	1	2	3	4	5
Students	12	24	36	48	60

$$
k=\frac{y}{x}=\frac{36}{3}=12
$$

Find the constant of proportionality:

Apples (lbs)	2	2.5	3	3.5	4
Cost (\$)	3.96	4.95	5.94	6.93	7.92

Click

Find the constant of proportionality:
 \mathbf{X} \mathbf{Y} 3 4.5 4 6 5 7.5 8 12 9 13.5

46 Find the constant of proportionality.

\mathbf{X}	\mathbf{Y}
2	1.5
5	3.75
10	7.5
12	9

47 Find the constant of proportionality.

\mathbf{X}	\mathbf{Y}
2	2.5
3	
4.75	
4	
9	

48 Find the constant of proportionality.

\mathbf{X}	\mathbf{Y}
50	3
75	4.5
100	6
140	8.4

Examples:

\qquad
\square

Find the constant of proportionality:
(click to reveal)

49 Find the constant of proportionality.
$y=\frac{1}{9} x$

50 Find the constant of proportionality.
$y=12.9 x$

51 Find the constant of proportionality.
$y=0.45 x$

In a graph, choose a point (x, y) to find and simplify the ratio.

Find the constant of proportionality.

53 Find the constant of proportionality.

Slide 98 / 168

Slide 99 / 168

54 Find the constant of proportionality.

Writing Equations

 For ProportionsReturn to
Table of Contents

The constant of proportionality and the unit rate are equivalent.

We can use the constant of proportionality to help write equations using proportional relationships.

By transforming the equation from: $k=\frac{y}{x} \quad$ to $\mathbf{y}=\mathbf{k x}$, we can write an equation that can be applied to various situations.
*Remember: x is the independent variable and y is the dependent variable. This means that a change in x will effect y.

EXAMPLE

You are buying Jersey Tomatoes for a cost of 2 pounds for $\$ 3.98$. Write an equation to represent the proportional relationship.

```
Let c = cost
    p = pounds
Let \(\mathrm{c}=\mathrm{cost}\)
\[
\mathrm{p}=\text { pounds }
\]
```

- Determine the unit rate:

$$
\begin{aligned}
& k=\frac{3.98}{2}=\frac{1.99}{1} \\
& k=\$ 1.99 \text { per pound }
\end{aligned}
$$

Write an equation to relate the two quantities:

$$
c=k p
$$

$$
c=1.99 p
$$

TRY THIS:

At the candy store, you purchase 5 lbs for $\$ 22.45$. Write an equation to represent the proportional relationship.

Let $\mathrm{c}=$ cost
$\mathrm{p}=$ pounds
Determine the unit rate:
click
Write an equation to relate the two quantities:

TRY THIS:

Write an equation to represent the proportional relationship shown in the table.

Gallons	10	15	20	25
Miles	247	370.5	494	617.5

$$
k=\frac{m}{g}=\frac{247}{10}=\frac{24.7}{1}
$$

Let $\mathrm{g}=$ gallons $\mathrm{m}=$ miles

Slide 104 / 168

click

55 Write an equation that represents the proportional relationship.

The total cost (c) of grapes for $\$ 1.40$ per pound(p)
(1) $\mathrm{A} \quad \mathrm{c}=1.4 \mathrm{p}$
() $B=1.4 c$

Write an equation that represents the proportional relationship.

Shirts	5	15	25	35
Cost	$\$ 57.50$	$\$ 172.50$	$\$ 287.50$	$\$ 402.50$

A $s=11.5 c$
() $B \quad c=11.5 \mathrm{~s}$
() $c=0.09 \mathrm{~s}$
() $\mathrm{s}=0.09 \mathrm{c}$

Slide 107 / 168

57 Write an equation that represents the proportional relationship.

A $y=\frac{1}{3} x$
B $\quad y=3 x$
(C) $y=2.5 x$
() $y=7.5 x$

58 Write an equation that represents the proportional relationship.

You are ordering new menus for your restaurant. You pay $\$ 362.50$ for 50 menus.
(1) $\mathbf{A}=\mathbf{0 . 1 4 m}$
() B $m=7.25 c$
() $C \quad m=0.14 c$
() $\mathbf{D}=\mathbf{7 . 2 5 m}$

Write an equation that represents the proportional relationship.

Days, d	2	3	4	5
Hours, h	17	25.5	34	42.5

() $\mathrm{A} d=8.5 h$
(${ }^{\text {B }} \quad d=\frac{2}{17} h$
C $h=\frac{2}{17} d$
〇) $h=8.5 d$

Slide 110 / 168

Remember, you can use a graph to determine if a

 relationship is proportional. How?If the graph is a straight line going through the origin $(0,0)$.
Once you determine that the relationship is proportional, you can calculate k, the constant of proportionality. Then, write an equation to represent the relationship.

What do these equations mean? Once we have determined the equation, we can understand what the graph was showing us visually.

Slide 113 / 168

The jitneys in Atlantic City charge passengers for rides. What amount do they charge per ride?

Find a point on the graph
click
Use the point to find the unit rate
lick
What does the unit rate represent?
click
What coordinate pair represents the unit rate?
click

Does the line run through the unit rate?
click

Slide 114 / 168

Mary drives the bus. Her rate is shown in the graph. What is the
unit rate? What does it represent?
ind a point on the graph
click
click
What does the unit rate represent?

What coordinate pair represents
the unit rate?
Does the line run through the unit rate?
\qquad
\qquad

Problem Solving \quad\begin{tabular}{l}

Return to
Table of
Contents

\hline
\end{tabular}

Chocolates at the candy store cost $\$ 6.00$ per dozen. How much does
one candy cost? Round your answer to the nearest cent.

Solution:

\[\)	$\frac{\$}{\text { candy }} \quad$$\frac{6.00}{12}=\frac{x}{1}$ $0.00(1)=12 x$
$0.50=x$	
$\$ 0.50 \text { per candy }$	
(Use equivalent rates ap proportions)	

\]

\[

\]

Chocolates at the candy store cost $\$ 6.00$ per dozen. How much does Solution:

$$
\begin{aligned}
\frac{\$}{\text { candy }} \quad \frac{6.00}{12} & =\frac{x}{1} \\
6.00(1) & =12 x \\
0.50 & =x \\
\$ 0.50 & \text { per candy }
\end{aligned}
$$

Example 2:

There are 3 books per student. There are 570 students.
How many books are there?
Set up the proportion:
Books
Students

```
3}=~\quadWhere does the 570 go
1
\frac{3}{1}=\frac{x}{570}
3 670 = = x
x =1,710 books
```

Example 3:
The ratio of boys to girls is 4 to 5 . There are 135 people on a team. How many are girls?

Set up the proportion:
$\frac{\text { Girls }}{\text { People }} \quad$ How did we determine this ratio?
$\frac{5}{9}=-\quad$ Where does the 135 go?
$\frac{5}{9}=\frac{x}{135}$
$5 \bullet 135=9 x$
$675=9 x$
$x=75$
75 girls

Slide 119 / 168
\qquad

\qquad | \square |
| :--- | \square (1)

\qquad
\qquad

60 Cereal costs $\$ 3.99$ for a one pound box. What is the price per ounce? Round your answer to the nearest penny.

61 Which is the better buy?
Brand A: \$2.19 for 12 ounces
Brand B: \$2.49 for 16 ounces

OA Brand A
OB Brand B

62 There are 4 girls for every 10 boys at the party. There are 56 girls at the party. How many boys are there?

63 The farmer has cows and chickens. He owns 5 chickens for every cow. He has a total of 96 animals. How many cows does he own?

64 The auditorium can hold 1 person for every 5 square feet. It is 1210 square feet. How many people can the auditorium hold?

65 The recipe for one serving calls for 4 oz of beef and 2 oz of bread crumbs. 50 people will be attending the dinner. How many ounces of bread crumbs should be purchased?

66 Mary received 4 votes for every vote that Jane received. 1250 people voted. How many votes did Jane receive?

67 To make the desired shade of pink paint, Brandy uses 3 oz . of red paint for each oz. of white paint. She needs one quart of pink paint. How many oz. of red paint will she need? (1 quart = 32 ounces)

Slide 128 / 168

Making Sense of

Your Answers

Sometimes your answer will be a decimal or fraction that may not make sense as answer.

Double check:

- Reread the problem
- Does your answer make sense?
- Do you need to round your answer?
- If so, which way should you round your answer?

68 Cole earned a total of $\$ 11$ by selling 8 cups of lemonade. How many cups of lemonade does Cole need to sell in all to earn $\$ 15$? Assume the relationship is directly proportional.

69 Hayley learned a total of 13 appetizer recipes over the course of 3 weeks of culinary school. How many weeks does she need to complete to have learned 21 appetizers? Assume the relationship is directly proportional.

70 Kailyn took a total of 2 quizzes over the course of 5 days. After attending 16 days of school this quarter, how many quizzes will Kailyn have taken in total? Assume the relationship is directly proportional.

71 Brittany baked 18 cookies with 1 cup of flour. How many cups of flour does Brittany need in order to bake 27 cookies? Assume the relationship is directly proportional.

72 Shane caught a total of 10 fish over the course of 2 days on a family fishing trip. At the end of what day will Shane have caught his 22 fish? Assume the relationship is directly proportional.

73 In a sample of 50 randomly selected students at a school, 38 students eat breakfast every morning. There are 652 students in the school. Using these results, predict the number of students that eat breakfast.
OA 76
OB 123
○ 247
OD 496
\square

Scale Drawings

Return to
Table of
Contents

Scale drawings are used to represent objects that are either too large or too small for a life size drawing to be useful.

Examples:

A life size drawing of an ant or an atom would be too small to be useful.

A life size drawing of the state of New Jersey or the Solar System would be too large to be useful.

A scale is always provided with a scale drawing

The scale is the ratio: drawing real life (actual)

When solving a problem involving scale drawings you should:

- Write the scale as a ratio
- Write the second ratio by putting the provided information in the correct location (drawing on top \& real life on the bottom)
Solve the proportion

Example:

This drawing has a scale of "1:10", so anything drawn with the size of "1" would have a size of "10" in the real world, so a measurement of 150 mm on the drawing would be 1500 mm on the real horse.

Real Horse 1500 mm high

Example:

The distance between Philadelphia and San Francisco is 2,950 miles. You look on a map and see the scale is 1 inch : 100 miles. What is the distance between the two cities on the map?
$\frac{\text { drawing }}{\text { actual }}=\frac{1}{100}$

Write the scale as a ratio
$\frac{1}{100}=\frac{x}{2950}$
$100 x=2950$
$x=29.5$
29.5 inches on the map

Try This:

On a map, the distance between your town and Washington DC is 3.6 inches. The scale is 1 inch : 55 miles. What is the distance between the two cities?

Slide 140 / 168
\qquad \square \square (2) -
\qquad

74 On a map with a scale of 1 inch $=100$ miles, the distance between two cities is 7.55 inches. If a car travels 55 miles per hour, about how long will it take to get from one city to the other.

A 13 hrs 45 min.
B 14 hrs 30 min .
C 12 hrs
OD 12 hrs 45 min .

```
|
```

\qquad
\qquad
\qquad
\qquad
正

75 | On a map, the scale is $1 / 2$ inch= 300 miles. Find the actual |
| :--- |
| distance between two stores that are $51 / 2$ inches apart on |
| the map. |
| A 3000 miles |
| B 2,727 miles |
| C 3,300 miles |
| D 1,650 miles |
| |

76 The figure is a scale of the east side of a house. In the drawing, the side of each square represents 4 feet. Find the width and height of the door.

A $\quad 4 \mathrm{ft}$ by $9 \mathbf{f t}$
B 4 ft by 12 ft
○C 4 ft by 8 ft
OD 4 ft by 10 ft

77 The distance between Moorestown, NJ and Duck, NC is 910 miles. What is the distance on a map with a scale of 1 inch to 110 miles?

78 The distance between Philadelphia and Las Vegas is 8.5 inches on a map with a scale 1.5 in : $\mathbf{5 0 0}$ miles. What is the distance in miles?

79 You are building a room that is 4.6 m long and 3.3 m wide. The scale on the architect's drawing is $1 \mathrm{~cm}: 2.5 \mathrm{~m}$. What is the length of the room on the drawing?

80 You are building a room that is 4.6 m long and 3.3 m wide. The scale on the architect's drawing is $1 \mathrm{~cm}: 2.5 \mathrm{~m}$. What is the width of the room on the drawing?

81 Find the length of a 72 inch wide wall on a scale drawing with a scale 1 inch : 2 feet.

82 You recently purchased a scale model of a car. The scale is 15 cm : 10 m . What is the length of the model car if the real car is $4 \mathbf{m}$?

83 You recently purchased a scale model of a car. The scale is 15 cm : 10 m . The length of the model's steering wheel is 1.25 cm . What is the actual length of the steering wheel?

Similar Figures

Return to
Table of
Contents

Two objects are similar if they are the same shape but different sizes.

In similar objects:

- corresponding angles are congruent
- corresponding sides are proportional

To check for similarity:
. Check to see that corresponding angles are congruent
Check to see that corresponding sides are proportional
(Cross products are equal)

Check to see that corresponding angles are congruent Check to see that corresponding sides are proportional (Cross products are equal)

Example:

Is the pair of polygons similar? Explain your answer.

Slide 155 / 168
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example:

Is the pair of polygons similar? Explain your answer.

$\frac{5}{10}=\frac{8}{13}$ $5(13)=10(8)$
$65=80$
NO
OR
$\frac{5}{8}=\frac{10}{13}$
$5(13)=8(10)$
$65=80$
NO

84 Are the polygons similar? You must be able to justify your answer. (Shapes not drawn to scale.)
Yes
ONo

5 Are the polygons similar? You must be able to justify your answer. (Shapes not drawn to scale.)

Yes
ONo

86 Are the polygons similar? You must be able to justify your answer. (Shapes not drawn to scale.)

Find the value of x in the pair of similar polygons.

$$
\begin{aligned}
\frac{x}{x} & =-10 \\
5(10) & =6 x \\
150 & =6 x \\
25 \mathrm{~cm} & =x
\end{aligned}
$$

$$
\begin{aligned}
& 6 \\
& 15(10)=6 x \\
& 150=6 x \\
& 25 \mathrm{~cm}=x
\end{aligned}
$$

Try This:

Find the value of y in the pair of similar polygons.

Slide 161 / 168

88 Find the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

18 ft

9 Find the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

90 Find the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

11 mm

Slide 167 / 168
92 Find the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

93 Find the measure of the missing value in the pair of similar polygons. (Shapes not drawn to scale.)

5 mm

